Saccharomyces cerevisiae Ngl3p is an active 3′–5′ exonuclease with a specificity towards poly-A RNA reminiscent of cellular deadenylases
نویسندگان
چکیده
Deadenylation is the first and rate-limiting step during turnover of mRNAs in eukaryotes. In the yeast, Saccharomyces cerevisiae, two distinct 3'-5' exonucleases, Pop2p and Ccr4p, have been identified within the Ccr4-NOT deadenylase complex, belonging to the DEDD and Exonuclease-Endonuclease-Phosphatase (EEP) families, respectively. Ngl3p has been identified as a new member of the EEP family of exonucleases based on sequence homology, but its activity and biological roles are presently unknown. Here, we show using in vitro deadenylation assays on defined RNA species mimicking poly-A containing mRNAs that yeast Ngl3p is a functional 3'-5' exonuclease most active at slightly acidic conditions. We further show that the enzyme depends on divalent metal ions for activity and possesses specificity towards poly-A RNA similar to what has been observed for cellular deadenylases. The results suggest that Ngl3p is naturally involved in processing of poly-adenylated RNA and provide insights into the mechanistic variations observed among the redundant set of EEP enzymes found in yeast and higher eukaryotes.
منابع مشابه
Purification of Saccharomyces cerevisiae eIF4E/eIF4G/Pab1p Complex with Capped mRNA
Protein synthesis is one of the most complex cellular processes, involving numerous translation components that interact in multiple sequential steps. The most complex stage in protein synthesis is the initiation process. The basal set of factors required for translation initiation has been determined, and biochemical, genetic, and structural studies are now beginning to reveal details of their...
متن کاملActive-site mutations in the Xrn1p exoribonuclease of Saccharomyces cerevisiae reveal a specific role in meiosis.
Xrn1p of Saccharomyces cerevisiae is a major cytoplasmic RNA turnover exonuclease which is evolutionarily conserved from yeasts to mammals. Deletion of the XRN1 gene causes pleiotropic phenotypes, which have been interpreted as indirect consequences of the RNA turnover defect. By sequence comparisons, we have identified three loosely defined, common 5'-3' exonuclease motifs. The significance of...
متن کاملThe Transcription Factor Associated Ccr4 and Caf1 Proteins Are Components of the Major Cytoplasmic mRNA Deadenylase in Saccharomyces cerevisiae
The major pathways of mRNA turnover in eukaryotes initiate with shortening of the poly(A) tail. We demonstrate by several criteria that CCR4 and CAF1 encode critical components of the major cytoplasmic deadenylase in yeast. First, both Ccr4p and Caf1p are required for normal mRNA deadenylation in vivo. Second, both proteins localize to the cytoplasm. Third, purification of Caf1p copurifies with...
متن کاملHuman 2′-phosphodiesterase localizes to the mitochondrial matrix with a putative function in mitochondrial RNA turnover
The vertebrate 2-5A system is part of the innate immune system and central to cellular antiviral defense. Upon activation by viral double-stranded RNA, 5'-triphosphorylated, 2'-5'-linked oligoadenylate polyribonucleotides (2-5As) are synthesized by one of several 2'-5'-oligoadenylate synthetases. These unusual oligonucleotides activate RNase L, an unspecific endoribonuclease that mediates viral...
متن کاملDecoying the cap- mRNA degradation system by a double-stranded RNA virus and poly(A)- mRNA surveillance by a yeast antiviral system.
The major coat protein of the L-A double-stranded RNA virus of Saccharomyces cerevisiae covalently binds m7 GMP from 5' capped mRNAs in vitro. We show that this cap binding also occurs in vivo and that, while this activity is required for expression of viral information (killer toxin mRNA level and toxin production) in a wild-type strain, this requirement is suppressed by deletion of SKI1/XRN1/...
متن کامل